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Abstract. We study one-dimensional Sisyphus cooling on the 5S1/2(F = 1) → 5P3/2(F ′ = 1) transition
of 87Rb atoms in the electric field created by two counter-propagating linearly polarized laser beams with
an angle of θ between the polarization directions. The neighbouring F ′ = 0 and F ′ = 2 excited states
are found to play an important role in the cooling mechanism, e.g., by inhibiting a significant population
of the velocity-selective dark state. Our experimental data, such as temperatures and probe absorption
coefficients, agree well with the results of quantum Monte-Carlo wavefunction simulations.

PACS. 32.80.Pj Optical cooling of atoms; trapping – 32.80.Lg Mechanical effects of light on atoms,
molecules, and ions – 32.80.Qk Coherent control of atomic interactions with photons

1 Introduction

The discoveries of polarization gradient cooling [1,2] and
velocity-selective coherent population trapping [3] were
two major steps in the history of laser cooling. Using the
combined effects of optical pumping and light shifts, po-
larization gradient cooling mechanisms and in particular
the Sisyphus effect allow temperatures as low as a few re-
coil energies [4] to be achieved. However, the recoil energy
is an intrinsic border that cannot be crossed without the
help of another physical process.

By contrast, velocity-selective coherent population
trapping (VSCPT) can be used to reach much lower tem-
peratures [5]. This method suffers however from two severe
drawbacks:

(i) the cooling process is relatively slow because it relies
on a random walk of atoms in momentum space,

(ii) it generally requires a transition connecting two levels
of angular momentum F = 1.

In fact, point (i) can be partly circumvented by com-
bining Sisyphus cooling and VSCPT [6–9]. In this case one
achieves a fast Sisyphus cooling down to a temperature of
a few recoils and a slow VSCPT cooling to lower temper-
atures afterwards. Point (ii) on the contrary is inherent
to the VSCPT method. The most successful experiments
[3,5] were done on a transition connecting the metastable
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23S1 and the excited 33P1 states of helium. This is a rather
difficult experiment which cannot be performed in a cell.
There are other atoms and in particular alkalies where a
F = 1 → F ′ = 1 transition does exist, but apart from
one successful experiment on the D1 line of rubidium [10]
there is, to our knowledge, no other experimental evidence
of subrecoil temperatures obtained by VSCPT.

In previous experiments, isolated atomic transitions
were deliberately chosen. In this work, however, we wished
to investigate in detail the influence of neighbouring tran-
sitions on dark state cooling, and we study laser cooling of
87Rb atoms near the 5S1/2(F = 1)→ 5P3/2(F ′ = 1) tran-
sition (D2 line). For the sake of simplicity and to be able
to make quantitative comparisons with theory, we limited
our study to the case of one-dimensional (1D) cooling.
Basically, we used the so-called “lin θ lin” configuration
[11] where the two counterpropagating beams have linear
polarizations with an angle θ between them.

Our main observation, confirmed by quantum Monte-
Carlo wavefunction simulations, is that it is not possible
to achieve temperatures below the recoil energy on this
system. This is due to the harmful effect of the other hy-
perfine sublevels of the excited state. Although the laser
detuning from the F = 1 → F ′ = 1 transition is typi-
cally one order of magnitude smaller than that from the
F = 1 → F ′ = 0 or F = 1 → F ′ = 2 transitions, these
latter transitions inhibit the dark state cooling.

We have studied the dependence of the temperature
on the intensity, detuning and angle θ and find results
in excellent agreement with the theoretical predictions.
We also performed some experiments with a probe beam
and in particular considered how the absorption varies
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with the probe polarization. Such experiments give some
information about the atomic localization. As expected
from the temperature measurements, we find a localiza-
tion which differs from that of the dark state but which is
in good agreement with the theoretical prediction.

2 Sisyphus cooling on a dark or nearly dark
transition

In this paper we will discuss the cooling of 87Rb atoms in
the electric field of two counter-propagating laser beams
of linear polarization with an angle θ between the two
polarization directions (“lin θ lin” configuration). The two
beams have the same amplitude E and frequency ω = ck
and propagate along Oz. The lasers are tuned close to
resonance with the atomic F = 1 → F ′ = 1 transition
(resonance frequency ω0). For this laser configuration the
spatial dependence of the circularly polarized components
of the total electric field is given by

a±(z) = E
√

2 cos(kz ± θ/2). (1)

2.1 Pure atomic 1→ 1 transition

The case of a pure F = 1→ F ′ = 1 transition, i.e., where
all other atomic transitions are sufficiently far detuned
that they can be neglected, has already been studied in
detail [7], and we will only repeat the basic properties
here.

For weak atomic excitation the two adiabatic poten-
tials obtained by diagonalizing the coupling between the
two ground states |mF = ±1〉 are given by

VNC(z) = 0, (2)

VC(z) = U0

[
cos2(kz + θ/2) + cos2(kz − θ/2)

]
, (3)

where U0 is the light shift for a single laser beam. Thus,
for blue detuning (ω > ω0) the lower adiabatic potential
is flat, whereas the upper one is spatially modulated for
θ 6= π/2. The corresponding eigenstates are

|ψNC〉 =
1√
D(z)

[
cos(kz − θ/2)|mF = −1〉

+ cos(kz + θ/2)|mF = 1〉
]
, (4)

|ψC〉 =
1√
D(z)

[
− cos(kz − θ/2)|mF = −1〉

+ cos(kz + θ/2)|mF = 1〉
]
, (5)

where D(z) = 1 + cos θ cos(2kz).
The cooling of the atoms in this laser configuration

arises from two distinct mechanisms which have widely
differing characteristics. Sisyphus cooling only occurs for
blue detuning whilst VSCPT occurs whatever the detun-
ing. We only consider here the case of blue detuning. The
two mechanisms also have very different cooling times.

Firstly, on a relatively short time scale, Sisyphus cooling
takes place due to the spatially varying upper adiabatic
potential, i.e., motional coupling of the adiabatic poten-
tials transfers a moving atom from the lower to the upper
adiabatic potential preferentially at positions where the
latter assumes a minimum. Subsequently the atom runs
up the potential hill thereby transferring kinetic energy
into potential energy which is finally removed from the
system by a spontaneously emitted photon bringing the
atom back into the flat lower potential.

Secondly, on a much longer time scale [7], VSCPT
takes place, which causes the atomic population to ac-
cumulate in the dark state given by the wave function

|ψD〉 =
1
2

[
eiθ/2| − 1;−~k〉+ e−iθ/2| − 1; ~k〉

+ eiθ/2|1; ~k〉+ e−iθ/2|1;−~k〉
]

(6)

(in a ket |mF ; p〉 the first parameter refers to the Zeeman
sublevel and the second to the atomic momentum along
Oz). This state is completely decoupled from the laser
light, and hence once an atom is in this state, it will remain
there.

The momentum distribution associated with |ψD〉 has
two peaks located at ±~k. For |ψD〉 these peaks are δ func-
tions but in actual experiments they have a nonzero width
which is used for measuring the temperature. An atom in
the dark state is found at position z with a probability
proportional to

P (z) =
∑
mF

|〈mF , z|ψD〉|2 = 1 + cos θ cos(2kz). (7)

This probability is maximum for z = 0, ±λ/2, . . . and
minimum for z = ±λ/4, ±3λ/4, . . . (for θ 6= ±π/2).

2.2 Effect of neighbouring transitions

However, real atoms have a more complicated hyperfine
structure and thus the laser light usually couples the
F = 1 ground state to several excited states with an-
gular momenta different from the favourable F ′ = 1. This
disturbs the cooling on the 1 → 1 transition, and a com-
pletely dark state no longer exists. Of course, this effect
depends strongly on the energy spacing of the excited state
sublevels.

In the experiment we worked on the D2 line of 87Rb,
where the most important disturbance of the lattice on
the 1→ 1 transition comes from the close F ′ = 0 excited
state (the energy separation between the F ′ = 0 and the
F ′ = 1 excited state being 12.3~Γ , where Γ is the natural
line width of the 5P3/2 level, Γ = 2π × 5.889 MHz, see
Fig. 1). Treating this off-resonant coupling of the lattice
lasers to the F ′ = 0 state as a weak perturbation, one
obtains in first order the lowest adiabatic potential

V ′NC(z) =
4
3
U ′0

cos2(kz + θ/2) cos2(kz − θ/2)
cos2(kz + θ/2) + cos2(kz − θ/2)

(8)



D. Lucas et al.: Sisyphus cooling of rubidium atoms in a nearly dark lattice 263

5S1/2 F=1

F=2

5P1/2 F''=2

F''=1

5P3/2

F'=3

F'=2

F'=1

F'=0

D2D1

150 hG-

45.3 hG-

26.7 hG-

12.3 hG-

1150 hG-

Fig. 1. Simplified level scheme of 87Rb. Angular momenta of
hyperfine levels are indicated, and the intervals between them
given in terms of the natural line width of the 5P3/2 level,
Γ = 2π × 5.889 MHz.

Fig. 2. Lowest adiabatic potential V ′NC(z) for θ = 30◦ (solid
line), θ = 60◦ (long dashes), and θ = 90◦ (short dashes) for an
optical potential depth U ′0 = 10ωR.

instead of the flat potential VNC(z) (Eq. (2)), where U ′0
denotes the light shift per beam on the 1→ 0 transition.
Examples for this adiabatic potential for different lattice
angles θ are plotted in Figure 2.

From the form of this potential we expect that the
atoms will be localized around z = ±λ/4 for small lat-
tice angles, and around z = ±λ/8, ±3λ/8 for θ = 90◦
(“lin ⊥ lin” configuration) [12]. But for all values of θ the
perturbed potential V ′NC(z) has maxima at z = 0, ±λ/2,
where the velocity-selective dark state of the pure 1 → 1
transition is localized, see equation (7). Hence, the cou-
pling of the laser light to the neighbouring F ′ = 0 excited
state efficiently destroys the velocity-selective dark state.

However, the combined system of the excited states
F ′ = 0 and F ′ = 1 still exhibits local dark states at po-
sitions where the laser light is circularly polarized, i.e.,
for kz = ±θ/2 ± π/2. But even this local dark state is
destroyed by taking the next neighbouring level F ′ = 2
into account (the energy spacing between the F ′ = 1 and
F ′ = 2 state being 26.7~Γ ).

Now the question arises for which parameters, such as
hyperfine splitting, laser intensity, etc., the coupling to
the neighbouring atomic states prevents the existence of
VSCPT. We may estimate this threshold from the follow-
ing considerations.

Although the lifetime of the exact VSCPT dark state
is infinite, the time to reach this steady-state is also in-
finite. In any experiment, one thus obtains a momentum
distribution which is peaked at the momenta±~k, but still
has a nonzero width. Atoms in these quasi-dark states are
weakly coupled by motional coupling to the bright states,
which, depending on their velocity, gives them a finite de-
cay rate [3] of

ΓNC(p) ≈ Γ
(
kp

m

)2

/Ω2, (9)

where Ω is the Rabi frequency of a single laser beam. If
we assume a width of the momentum distribution of ~k/2,
the average decay rate of the quasi-dark states is given by

ΓNC ≈ Γω2
R/Ω

2, (10)

where ωR = ~k2/(2m) is the recoil frequency. VSCPT will
thus be destroyed if the optical pumping rate on the 1→ 0
transition, Γ10 = ΓΩ2/∆2

1, is of the order of or larger than
this mean decay rate, i.e., for

ΓΩ2/∆2
1 > Γω2

R/Ω
2, (11)

where ∆1 is the hyperfine splitting between the excited
state sublevels F ′ = 0 and F ′ = 1. Because U ′0 ∼ Ω2/∆1,
equation (11) is equivalent to

U ′0 > ωR. (12)

Thus, to obtain VSCPT one either has to work with atoms
with a large hyperfine splitting, such as metastable helium
[3], or one has to operate at very low laser intensity.

In our experiment the detuning ∆ = ω − ω0 from
the 1 → 1 transition was typically of the order of Γ .
We had thus U ′0/U0 ∼ Γ/∆1 and equation (12) reads
U0 > ωR∆1/Γ . Because ∆1/Γ ∼ 10 we find that VSCPT
could only be efficient in a domain well below the “de-
crochage” (low-intensity breakdown) of the Sisyphus ef-
fect. In fact, under practical experimental conditions equa-
tion (12) was fulfilled and we focused on the investigation
of the Sisyphus cooling in a nearly dark lattice.

We may quantify the term “nearly dark” by comparing
the scattering rate due to the 1→ 0 transition, Γ10, with
that in the quasi-dark state, ΓNC. From the above argu-
ments we find Γ10/ΓNC ≈ U ′0

2
/ω2

R and taking U0 ≈ 100ωR

(corresponding to an intensity close to the decrochage in
our experiments) yields Γ10/ΓNC ≈ 100. On the other
hand, the scattering rate in the corresponding bright lat-
tice would be of the order of ΓΩ2/∆2 ≈ 100Γ10.

3 Experimental setup

The experiment takes place in an evacuated quartz cell
containing rubidium vapour at a pressure of ∼ 10−8 torr.
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Two master diode lasers (one external cavity, one internal
cavity) are locked to hyperfine transitions in the D2 line
of 87Rb, and each master laser is used to injection-lock
two slave diode lasers to provide light for trapping and
repumping, and for the lattice and the lattice repumper.

Approximately 107 atoms of 87Rb are first trapped and
cooled to a temperature of about 25 µK in a magneto-
optical trap operating at a detuning of −3Γ from the
F = 2 → F ′ = 3 hyperfine transition (repumping light
resonant with the 1 → 2 transition is superimposed on
the six trapping beams). The axial field gradient at the
trap centre is approximately 7 G/cm.

After a trap loading period of 1 s, the magnetic field
gradient is switched off (in <∼ 1 ms) and the atoms undergo
8 ms of molasses cooling during which the intensity of the
2 → 3 beams is reduced in a series of steps. Next the
molasses beams are turned off completely, first by fast
(<∼ 10 ns) extinction of the r.f. supply to an acousto-optic
modulator (AOM) in the beam, then any residual light
is blocked by a mechanical shutter; the same shutter cuts
the repumping light.

Within 1 ms, the vertical counter-propagating lattice
beams and associated repumping beams are switched on.
The lattice beams are blue-detuned by a variable fre-
quency ∆ from the 1 → 1 transition; the detuning and
intensity of these beams is controlled by AOMs, and they
are switched by a combination of AOM and shutter as for
the molasses beams; the angle between the linear polar-
izations of the two beams is controlled by a λ/2 wave-
plate. The lattice repumping light consists of two pairs of
counter-propagating beams lying in the horizontal plane,
one pair lying approximately at right angles to the other;
it is blue-detuned by Γ from the 2 → 2 transition and is
switched by a mechanical shutter.

The remainder of the experimental sequence depends
on whether temperature measurements (Sect. 5) or probe
absorption measurements (Sect. 6) are being made. Tem-
perature is measured by a ballistic (time-of-flight) method.
After approximately 6 ms the lattice repumping beams
and the lattice beams are switched off (in that order to
leave the atoms in the F = 2 ground state). The atoms fall
freely and pass through a laser beam in the form of a thin
horizontal sheet of light about 8 cm below the trap posi-
tion, resonant with the 2 → 3 transition. The absorption
of this beam as the atoms traverse it yields their veloc-
ity distribution; their initial temperature is obtained from
the width of this distribution by fitting a Gaussian curve
and correcting for geometrical factors due to the initial
size of the trapped cloud of atoms and the thickness of
the detection beam.

For probe absorption measurements, a weak probe
beam is switched on with the lattice beams. This probe
beam, resonant with the 1 → 1 transition, propagates at
a small angle to the lattice beams (1.2◦ ± 0.1◦), has a
much smaller area than they do (0.90 mm2 compared with
28 mm2), and is much less intense (the probe intensity
was maintained at 0.5% of the intensity per lattice beam
I, a value found to be sufficiently small that there was
negligible effect on the temperature of the atoms in the

q/2

kp

+k

q/2

-k

x

y

z

f

Fig. 3. Geometry of lattice, lattice repumper and probe beams
in the experiment. The counter-propagating lattice beams ±k
have an angle θ between their linear polarizations. The probe
beam kp makes a slight angle φ with the lattice beams, exag-
gerated here for clarity (in fact φ = 1.2◦±0.1◦); it is shown here
with its polarization perpendicular to the lattice axis (dotted
lines). The lattice repumping beams, propagating in the xy-
plane, are also indicated.

lattice). The probe is linearly polarized with the polariza-
tion vector either parallel or perpendicular to the lattice
axis (Fig. 3). The absorption of the probe beam by the
lattice is obtained by measuring the transmission during
and after the lattice (the signal being averaged over ap-
proximately 1 ms in each case), which must be done every
experimental sequence because of variations in scattered
light levels. Undesired absorption of the probe after the
end of the lattice period is eliminated by extinguishing
the lattice light after its repumping light, thus ensuring
all atoms are optically pumped out of the F = 1 lower
level before the probe transmission is measured. The ge-
ometry of the lattice, lattice repumper and probe beams
is illustrated in Figure 3.

Whether for temperature or probe absorption mea-
surements, the experimental sequence must be repeated
many times to obtain an acceptable signal-to-noise ratio;
typically signals are averaged over 20 sequences. Other
important experimental considerations are compensation
of stray magnetic fields and elimination of scattered light,
e.g. from the trapping laser; both these factors reduce the
cooling efficiency of the nearly dark lattice. Stray magnetic
fields are cancelled by three orthogonal compensation coils
and we adjust the DC current in each of these iteratively
to minimize the temperature of the atoms in the lattice.
In this manner DC magnetic fields are compensated to
<∼ 10 mG; the amplitudes of residual AC magnetic fields
were measured to be of the same order of magnitude.

Scattered light is blocked by the mechanical shutters
described previously and by shielding the interaction re-
gion from the rest of the optics. These precautions allowed
us to achieve temperatures in the 1D lattice as low as
3 µK.
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4 Theoretical approach: Quantum
Monte-Carlo simulations

We will compare our experimental results with numer-
ically obtained solutions of the atomic master equation
which describes the dynamics of the atomic density oper-
ator ρ restricted to the ground state manifold by adiabatic
elimination of the excited states. This master equation is
given by

ρ̇ = −i
[
heffρ− ρh†eff

]
+

∑
F ′=0,1,2

γF ′
∑

σ=0,±1

∫ k

−k

du
k
Nσ
(u
k

)
×
[
e−iux̂B̂F

′

σ

]
ρ
[
B̂F

′†
σ eiux̂

]
(13)

where the effective Hamiltonian heff,

heff =

p̂2

2m
+

∑
F ′=0,1,2

(
UF ′ −

i
2
γF ′

) ∑
σ=0,±1

B̂F
′†

σ B̂F
′

σ , (14)

describes the coherent interaction of the atom with the
light field and the decay of the atomic ground states due
to optical pumping, and the second term in equation (13)
gives rise to the changes of the atomic state according to
optical pumping. In equations (13, 14) the operators B̂F

′

σ

describe Raman transitions consisting of the absorption
of a single laser photon (which excites the atom to the F ′
excited state) and the subsequent spontaneous emission
of a σ-polarized photon, UF ′ (γF ′) is the optical potential
depth (optical pumping rate) of a single laser beam on the
1 → F ′ transition, and Nσ(q) is the angular distribution
of spontaneously emitted photons. For a derivation and a
more detailed description of this master equation see, e.g.,
reference [13].

We numerically solve equation (13) for the atomic
steady state by a fully quantum wavefunction Monte-
Carlo simulation technique [7,14,15]. The basic idea of
this method is to integrate the time evolution of the
atomic wavefunction governed by the effective Hamilto-
nian heff, and to apply quantum jumps described by the
operators B̂F

′

σ to this wavefunction at random times but
with the appropriate distribution. By averaging over many
simulations of this kind one obtains the steady-state den-
sity operator and thus one can calculate all required quan-
tities, such as temperatures, momentum and spatial dis-
tributions, atomic polarizations etc.

5 Results: Temperature measurements

Experimental measurements of the temperature T were
performed as described in Section 3. We studied the varia-
tion of T with I (intensity per lattice beam), ∆ (frequency
detuning), and θ (angle between the lattice beam polar-
izations). The axes in the figures are labelled with the

Fig. 4. Temperature vs. lattice intensity for θ = 30◦ and θ =
90◦. The experiments were performed at a detuning ∆ = 2Γ .
The intensity I = 1 mW/cm2 corresponds to a light shift U0 =
97ωR, the recoil temperature TR = (~k)2/(mkB) is equal to
0.36 µK for Rb. The curves correspond to the predictions of
the Monte-Carlo simulations.

experimental parameters (T in µK, I in mW/cm2, etc.).
The conversion to other useful units (TR = (~k)2/(mkB),
U0/ωR, etc.) is given in the figure captions (for example,
TR = 0.36 µK in rubidium). Note, however, that the data
depend on the values of atomic parameters and that the
calculations were performed for the case of the D2 transi-
tions of 87Rb.

We show in Figure 4 the variation of T versus I for
θ = 30◦ and θ = 90◦, for a detuning of ∆ = 2Γ . The
general dependence, i.e., linear variation at high intensity
and decrochage at low intensity, corresponds to what is
expected from Sisyphus cooling. The fact that Sisyphus
cooling occurs for θ = 90◦ further demonstrates the im-
portance of the F ′ = 0 and F ′ = 2 levels because Sisyphus
cooling is not predicted for a pure F = 1→ F ′ = 1 tran-
sition in the lin ⊥ lin configuration [6].

One also notices that the lowest temperature Tmin '
3 µK remains significantly larger than TR (Tmin ' 8.3TR).
This shows that we do not reach the regime of VSCPT on
this transition. The curves in Figure 4 correspond to the
predictions of the quantum Monte-Carlo simulations; we
remark that there are no adjustable parameters in these
calculations. The agreement with the experimental results
is excellent at high intensities above the decrochage. At
low intensity the experimental values are lower than the
theoretical ones. This is probably because fast atoms are
lost in the experiment below the decrochage and there is
thus a selection of ultra cold atoms.

We present in Figure 5 the variation of T with θ
for fixed ∆ = 2Γ and fixed I (I = 2.1 mW/cm2 and
I = 6.8 mW/cm2). As expected the temperature exhibits
two peaks, a very large one at θ = 0◦ where there is ab-
solutely no polarization gradient cooling, and a smaller
one at θ = 90◦ where the polarization gradient cooling
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Fig. 5. Temperature vs. lattice angle for detuning ∆ = 2Γ
and lattice intensity I = 2.1 mW/cm2 (circles and solid curve)
and I = 6.8 mW/cm2 (triangles, dashed curve). These two
intensities respectively correspond to U0 = 200ωR and U0 =
660ωR.

Fig. 6. Temperature vs. inverse of detuning for lattice intensity
I = 2.1 mW/cm2 and θ = 60◦. Γ/∆ = 1 corresponds to U0 =
345ωR.

originates only from the distant F ′ = 0 and F ′ = 2 sub-
levels. The minimum of the temperature is found near
θ = 30◦.

The experimental values are compared with the results
of the quantum Monte-Carlo simulations. An excellent
agreement is found apart from a few points near θ = 0◦
where the experimental value is lower than the theoretical
one. This difference is probably due to impure polarization
of the lattice beams.

Finally, we present in Figure 6 the variation of T
versus Γ/∆ for I = 2.1 mW/cm2 and θ = 60◦. Here also
the variation of T corresponds to what is expected for
Sisyphus cooling, i.e., a linear variation for large values of

Γ/∆ and a decrochage when Γ/∆ → 0. The experimen-
tal measurements are in satisfactory agreement with the
quantum Monte-Carlo simulations. If we compare these
data with those obtained by changing the intensity, we
find an asymptotic behaviour of T = (I/∆)5.7 µK (where
I is in units of mW/cm2 and∆ in units of Γ ) here, whereas
a value of T = (I/∆)6.6 µK was found by varying I. Thus,
apart from a 15% difference in these values, there is a rea-
sonably good agreement with the qualitative behaviour of
Sisyphus cooling in bright lattices.

6 Results: Probe absorption

Let us now consider a supplementary probe beam with
electric field

Ep = Ep cos(kp · r− ωpt) (15)

of very weak intensity that interacts with the atoms (in
the experiment this intensity is approximately 0.5% of the
lattice intensity).

We will first evaluate the probe absorption in the case
of pure dark state cooling. We thus assume that the un-
perturbed state of the system is |ψD〉 (6), calculate the
state |ψ̃〉 in the presence of the probe beam using first-
order perturbation theory and find the dipole moment
〈d〉 = 〈ψ̃|d|ψ̃〉. If we denote by ey the unit vector for
the bisectrix of the lattice polarizations and ex the unit
vector for the orthogonal direction (Fig. 3), we look for a
variation of the form

〈dx〉 =
E0
2

[αx(Ep · ex) + αxy(Ep · ey)]

×ei(kp·r−ωpt) + c.c., (16)

〈dy〉 =
E0
2

[αyx(Ep · ex) + αy(Ep · ey)]

×ei(kp·r−ωpt) + c.c. (17)

In fact, denoting ∆p = ωp−ω0, the direct calculation gives

〈dx〉 =
−d2ei(kp·r−ωpt)

16~(∆p + iΓ/2)

×
{

[cos(kz + θ/2) + cos(kz − θ/2)]2 (Ep · ex)

+ i
[
cos2(kz + θ/2)− cos2(kz − θ/2)

]
(Ep · ey)

}
+ c.c.

(18)

However, we only need the spatial average value of the
term inside the bracket. Hence we find

αx = − d2

8E0~(∆p + iΓ/2)
(1 + cos θ), (19)

αxy = 0, (20)

and similarly

αy = − d2

8E0~(∆p + iΓ/2)
(1− cos θ), (21)

αyx = 0. (22)
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Fig. 7. Ratio αx/αy of the absorption coefficients for probe
polarizations orthogonal (αx) and parallel (αy) to the lattice
axis, as a function of lattice intensity I. The lattice detuning
is ∆ = 2Γ and the polarization angle is θ = 30◦.

As expected from the symmetry of the problem, the axes
ex and ey are the axes under which the light polarization
does not change. The ratio of the absorption coefficients
along ex and ey is

αx
αy

=
1 + cos θ
1− cos θ

· (23)

This result is associated with the localization of the dark
state (6) which is maximum for z = 0, ±λ/2, . . . , i.e., at
points where the lattice field polarization is ey. As a re-
sult, an x-polarized probe beam will experience a stronger
absorption than a y-polarized probe beam.

How do we expect these results to be modified for the
87Rb transition? Because ex and ey remain the axes of
symmetry of the problem, we still expect them to be the
neutral axes of the birefringent medium. By contrast, we
noticed that the localization in 87Rb differs from that of
the dark state. We thus expect to find a reduced value for
αx/αy.

All these results are well confirmed both by the ex-
periment and by the quantum Monte-Carlo simulation.
We show in Figure 7 the variation of αx/αy versus I for
∆ = 2Γ and θ = 30◦. The circles correspond to the ex-
periment and the line to the simulation. The asymptotic
value of αx/αy is equal to 2.4 whilst a value of 13.9 is
predicted from equation (23) for a pure dark state. The
agreement between the experiment and the simulation is
very good apart from a few points at low intensity. A pos-
sible reason for the disagreement at low intensity is that
the atoms have not attained an equilibrium state in the
experiment.

7 Conclusions

In conclusion, we have presented the results of an inves-
tigation of the cooling and trapping of atoms near an
F = 1 → F ′ = 1 transition in rubidium. The experimen-
tal results are generally in excellent agreement with the
theoretical predictions; we emphasize that the theoretical
results are ab initio calculations with no free parameters.
This study shows the difficulty of achieving VSCPT in
many real atoms because of the inhibiting effect of neigh-
bouring transitions. VSCPT can only be achieved on a
very well isolated transition.
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Guidoni for helpful discussions.
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